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Authors’ Note: This analysis builds on the technical analysis developed in our 2015 book “Economic
Risks of Climate Change” (4/) which in turn built on the proposed research program described in the
2013 conference paper “Empirically calibrating damage functions and considering stochasticity when
integrated assessment models are used as decision tools” by Kopp, Hsiang and Oppenheimer (/5). The
work presented in the current Research Article represents new analysis and results that were not contained

in either earlier text and which ultimately operationalizes the goals we outlined in the 2013 conference

paper.

A Materials and Methods Overview

Climate model integration Probabilistic projections of daily temperature and precipitation were pro-
duced with the Surrogate/Model Mixed Ensemble (SMME) method (/9, 41), which employs probabilis-
tic projections of GMST change produced using a simple climate model (SCM) to weight the gridded
temperature/precipitation projections from a multi-model ensemble of downscaled GCM output, and em-
ploys linear pattern scaling (54) to produce ‘model surrogates’ that cover portions of the SCM-derived
GMST probability distribution not present in the GCM ensemble (spatial patterns of temperature shown
in Figure 1A, precipitation shown in Figure S1). SCM temperature projections were produced using the
MAGICCS6 (55, 56), forced with Representative Concentration Pathway emissions (20) and with equi-
librium climate sensitivity calibrated to match the assessment of ref. (57). The multi-model downscaled
GCM ensemble (58) was produced using the Bias-Correction/Statistical Disaggregation method of GCMs
participating in the Coupled Model Intercomparison Project (CMIP) Phase 5 project (27). In contrast to
traditional pattern scaling, pattern scaling as employed in SMME to capture tails not represented in
the CMIPS5 archive retains unforced climate variability, which can substantially influence year-to-year
weather. To produce station-level projections, model and model surrogate projections are anomalized
with respect to their own historical records and then are added to observed temperature and precipita-
tion normals (1981-2010) at stations from the Global Historical Climatology Network (GHCN) (59).
Monthly averages are temporally disaggregated into daily realizations using historical weather variabil-

ity (60). Each county is assigned station-level projections that are nearest its geographic centroid.
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Supplementary Figure S1: Distribution of Surrogate/Model Mixed Ensemble of precipitation projec-
tions as function of GMST anomaly. 44 climate models (solid maps) and model surrogates (dimmed
maps) are weighted so the distribution of the 2080-2099 GMST anomaly exhibited by weighted models
matches the probability distribution of estimated GMST response (blue-grey line) under RCP8.5. Anal-
ogous display for temperature in Figure 1A.

Econometrically-derived impact integration Fifteen impacts are calculated using twenty-six dose-
response functions from empirical econometric analyses that met specific methodological and sample
criteria, in some cases with additional analyses from personal communication with authors (details in
SOM B). Dose-responses functions are conditional probability distributions, p(/|Taye, Tmax, Tmin, F), for
an impact / and daily mean (7,), maximum (7;,,x), and minimum (7;,;,) temperatures and precipitation
(P). In cases where multiple estimates are available, we combine them for each set of conditioning
variables values using hierarchical Bayesian modeling (6/). We developed an collaborative online tool
for this meta-analysis technique (http://dmas.berkeley.edu) to crowdsource future empirical

analyses, facilitating updates to these results. See Sections B-C.

Projection calculation Impacts are calculated from the dose-response functions at the county-level
for each year and reported as changes from 2012. In each RCP scenario, Monte Carlo (MC) sampling

is used to account for uncertainty in climate realization uncertainty (RCP2.6: 29 climate realizations,
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Supplementary Figure S2: Spatial distributions of projected median damages by sector. Same as
Figure 2 in main text for median projections, but without significance levels indicated. County-level
median values for average 2080-2099 RCP8.5 impacts using median dose-response functions. Impact
changes are changes relative to counterfactual “no additional climate change” trajectories. Color indicates
magnitude of impact in median projection. Negative damages indicate economic gains. (A) Percent
change in yields, area-weighted average for maize, wheat, soybeans, and cotton. (B) Changes in all-
cause mortality rates, across all age groups. (C) Change in electricity demand. (D) Change in labor
supply of full-time equivalent workers for low risk jobs where workers are minimally exposed to outdoor
temperature. (E) Same as (D) except for high risk jobs where workers are heavily exposed to outdoor
temperatures. (F) Change in damages from coastal storms. (G) Changes in violent crime rates. (H)
Changes in property crime rates. (I) Median total direct economic damage across all sectors (A)-(H).

RCP4.5: 43, RCP8.5: 44), within-month weather uncertainty (10 draws), and econometric uncertainty
(25 quantiles). Thus, we calculate 116 x 10 x 25 = 29,000 possible values for each of the 15 impacts
in each of 3,143 counties in each year 2000-2099 (distributions of end-of-century impacts in counties
shown in Figure 2 and median projections shown in Figure S2). State and national impacts are weighted
averages over counties. Impact distributions are computed as empirical distribution functions. See SOM

D-E.



Uncertainty decomposition Within RCP8.5, the climate realization, within-month weather draw, and
dose-response function quantile are sources of uncertainty. We calculate the variance across impacts,
varying each of these three individually and holding the others at a baseline. The interaction component
in Figure S6 is the total variance minus the sum of the remaining variances. Mathematical derivations are

in Section F.

Energy impacts The direct costs and benefits of climate-driven change in energy demand were as-
sessed using RHG-NEMS, a version of the National Energy Modeling System (NEMS), developed by the
U.S. Energy Information Administration (62), maintained by the Rhodium Group (RHG). RHG-NEMS
is a detailed, multi-sector, bottom-up model of U.S. energy supply and demand linking residential, com-
mercial, and industrial demand, electricity and primary energy supply, and macroeconomic feedbacks,
among other factors. Because of the complexity and run time of RHG-NEMS, we used representative
climate scenarios to construct region-specific response functions linking energy expenditures to changes
in climate. These impact functions were applied to compute county-level heating degree-day and cooling
degree-day data and were then aggregated using spatially-explicit energy expenditure data (63, 64). See

Section G.

Coastal impacts Damages from MSL interacting with cyclones are computed using the Risk Man-
agement Solutions (RMS) North Atlantic Hurricane Model and U.S. Winter Storm Model. Stochastic
spatial Markov models semi-parametrically fitted to historical storm tract data (34) are used to construct
a large ensemble of storm tracks, including genesis and lysis. For tropical cyclones, analytical wind
field profiles (32) are used to compute 10-meter, three-second peak gusts on a variable resolution grid
for each storm. Wind and pressure fields, over the lifetime of the storm, are used to force the MIKE 21
hydrodynamic model system (33) to estimate storm surges and wave impacts. Damages from both wind
fields and storm surges are estimated based on engineering-based models of vulnerability calibrated to
historical statistical relationships between exposure and historical damage, where the location, elevation,
and value of exposed assets are drawn from a proprietary RMS data base of all individual buildings along
the Atlantic Coast. Impacts of MSL are simulated by imposing MSL projections derived from ref. (36)

and differencing storm losses from simulations without MSL. Changes in hurricane frequency and inten-



sity are accounted for by adjusting the rate of storm genesis and intensification to match distributions of
tropical cyclone projections from ref. (35) for RCP8.5 and (65) for RCP4.5, and then differencing losses

from baseline simulations. See Section H.

Aggregate damage function construction Total damages in each sector and each daily projection are
valued and aggregated nationally. Each of these aggregate outcomes are then indexed against AGMST
in the corresponding climate realization. OLS or quantile regressions are used to characterize the joint
distribution of aggregate impact realizations and AGMST across the three RCPs. The procedure is simi-
larly implemented for total direct damages to compute the aggregate economy-wide damage function. It
is then possible to adjust this damage function to account for social valuations of risk and inequality. See

Sections I-K.

Dynamic computable general equilibrium modeling Temporal dynamics and general equilibrium ef-
fects of direct damages were modeled using a dynamic recursive computable general equilibrium (CGE)
model, the RHG Model of the U.S. Economy (MUSE) (47). The model is calibrated using 2011 so-
cial accounting matrices (66) and solves for market-clearing prices and quantities simultaneously at the
NCA-region level for multiple production sectors, households, and government agents. The model tracks
investment by region and sector and tracks changes in productivity, age-specific population, and capital
stock by vintage, region, and sector over time. Energy expenditure and labor productivity impacts are
implemented as changes in input factor productivity for producers and consumers using these goods.
Agricultural yield impacts are represented as changes in the output productivity of the relevant agricul-
tural goods, after storage is accounted for using an empirical auto-regressive model. Coastal damages
are represented as reductions in vintaged capital stock and mortality affects the time series of population

projection for the age cohorts in which deaths (or reductions in deaths) occur. See Section L.

B Micro-founding climate impacts with econometric results

We develop empirical, micro-founded sector-specific damage functions for a number of sectors seen to be

economically important. These comprise agriculture, crime, health, labor, and electricity demand. Within



each sector, we draw on statistical studies that robustly account for a number of potential confounding
factors when trying to identify the impacts of climate. Numerous high-quality and insightful studies are
omitted from our analysis because they did not meet all of our criteria, although many studies were used
to confirm the validity reported findings of the selected studies. Notably, however, we have designed
our approach to be dynamically inclusive in the long-run by building a system for crowd-sourced meta-
analysis and collaboration. Incorporating each study took considerable effort, often requiring new data,
efforts on the part of the original authors and ourselves to rerun analyses, and extensive discussions to
ensure an accurate interpretation of results. In this process, we are indebted to the authors of the analyzed
studies.

We applied the following criteria in assessing studies:

1. Nationally representative. We required that studies be conducted at national level or be drawn
from a representative random sample of the entire US. This was of particular relevance to health
studies. For example, many studies that we considered performed detailed time-series analysis of
single or multiple cities (e.g., (67); (68)). While these were high-quality studies, inclusion would
have required either a weighting scheme based on city populations or an assumption of national

generalizability.

2. Analyze recent time-periods in US history. As we are concerned with potential effects of adap-

tation, we preferred studies that identified effects as close to the present as possible.

3. Robust to unobserved factors that differ across spatial units (jurisdictions, counties, or states).
We placed an emphasis on studies that were able to control for unobservable differences between
spatial units of analysis with the inclusion of fixed effects. This required the use of longitudinal or

panel data, as cross-sectional comparisons between could suffer from omitted variable bias.

4. Identify responses to high-frequency (daily or weekly) climate variables. The importance of
using high-frequency data to estimate climate impacts is demonstrated by all papers included,
building on early work by (50), and in one case finding large effects by considering sub-daily

temperature responses (22).



5. Identify responses to the full distribution of temperature and rainfall measures. Many studies
looked at single climatic events, or parts of the temperature or rainfall distribution (e.g., heatwaves
in (69)). As we are modeling annual impacts, we chose only those studies that included the full
distribution of realised climate outcomes, and ensured the validity of results by comparison to

numerous studies looking at single phenomena or sub-populations.

6. Account for seasonal patterns and trends in the outcomes. Cyclicity and seasonality of re-
sponses to climate forcings are sources of major concern, so we selected only those studies that

robustly accounted for seasonal patterns and time trends in their analysis.

7. Ecologically valid. We required studies to be valid for real-life circumstances and levels of ex-
posure, which led us to prefer studies that were quasi-experimental in design, using observational
data. For example, in the case of labor, numerous laboratory studies exist on the intensive mar-
gin effects of temperature upon productivity (e.g., (70)). As these raised a question of ecological

validity when applied to the labor sector, we chose to not include them.

Many of the impacts of climate change will unfold over years, but distinguishing between the role of
climate change and the role of social, technological, and economic evolution is very difficult over any
long time horizon. Our criteria for selecting studies requires that long-term trends are accounted for and
are not reflected in the measured impact response functions. As a result, the impacts that we measure
are from idiosyncratic distortions in the weather distribution that are orthogonal to long-term trends (/3).
This approach has both strengths and weaknesses. Its key strength is that it clearly identifies the impacts
of weather as distinct from longer-term changes. Importantly, it only requires the weakest form of the
unit homogeneity assumption among all approaches used to measure climate impacts empirically (/3).
However, it may miss many of the long-term impacts of climate change, such as impacts on groundwater
supplies.

Numerous previous authors have incorrectly stated that this approach only identifies the effect of
weather and not the effect of climate. The assumptions necessary for these studies to be valid are derived
and analyzed in (/3). Notably, the key assumption for these approaches to be valid is the marginal treat-

ment comparability assumption, which requires that “the effect of a marginal change in the distribution



of weather (relative to expectation) is the same as the effect of an analogous marginal change in the cli-
mate” (/3). We refer readers interested in this method and discussions or tests of necessary assumptions

to (13).

We identify a number of studies using panel data to isolate the variation within the relevant spatial
unit, while controlling for unobservable difference between units. Estimates from each of the studies
were combined, as detailed in section C. We have been conservative in our choice of studies for the
current analysis, using only studies which we think most credibly identify the impact of climate upon
specific outcomes in each sector. However, our approach allows for future studies to be incorporated,
introducing new findings, and modifying the current results. The following is a complete list of empirical

response functions used in this study, with detailed discussion of each of the studies beneath:

Agriculture Maize yields vs. temperature (East)
Maize yields vs. temperature (West)
Maize yields vs. precipitation (East)
Maize yields vs. precipitation (West)
Wheat yield vs. temperature
Soybean yields vs. temperature (East)
Soybean yields vs. temperature (West)
Soybean yields vs. precipitation (East)
Soybean yields vs. precipitation (West)
Cotton yields vs. temperature
Cotton yields vs. precipitation
Maize yields vs. 100ppm CO, increase
Wheat yields vs. 100ppm CO; increase
Soybean yields vs. 100ppm CO, increase

Cotton yields vs. 100ppm CO; increase

Crime Violent crime vs. temperature

Violent crime vs. precipitation

9



Property crime vs. temperature

Property crime vs. precipitation

Health Mortality vs. temperature (all age)

Mortality vs. temperature (younger than 1 year)
Mortality vs. temperature (1 - 44 years)
Mortality vs. temperature (45 - 64 years)

Mortality vs. temperature (65 years and up)

Labor Hours worked in high-risk industries vs. tempera-

ture

Hours worked in low-risk industries vs. temperature

B.1 Agriculture

Schlenker and Roberts (22)

Outcome data:

Climate data:

Sample period:

Sample unit:

Methodology:

Result:

Yields for maize, soybeans, and cotton from US Department of Agriculture Na-
tional Agricultural Statistical Service.

PRISM temperature and rainfall, spatially and temporally interpolated from station
data to daily resolution in each county.

1950-2009

County-years, for counties with recorded yields of maize, soybeans, or cotton
Piecewise linear response of log(yield) to cumulative temperature (degree days)
and polynomial response to precipitation (seasonal total), controlling for county
fixed effects and state-specific quadratic trends. Piecewise linear models are spe-
cific to each crop type, with thresholds that capture the beneficial effects of tem-
peratures below a certain point, and the deleterious effects above.

Modified version of (22) (SI Appendix, p. 9, fig. A3; and p. 20, fig. 10).

10



Impact function:

We contacted the authors of the study to select a preferred response function from
the multiple methods they had employed, selecting a piecewise-linear specification
using degree days for temperature and seasonal total precipitation. We obtained
impact functions for each of the three crops studied, for both temperature and pre-
cipitation. The authors note the distinct difference in response between counties
to the east and west of the 100" meridian for maize and soybeans, so we obtained
separate response functions in for these regions. On December 19, 2013, we were
sent a complete list of response functions that were updated span the time period

up to and including 2011 (as presented in (71)).

Hsiang, Lobell, Roberts, and Schlenker (72)

Outcome data:
Climate data:
Sample period:
Sample unit:

Methodology:

Result:

Impact function:

USDA-NASS

University of Delaware monthly temperature and precipitation

1950-2007

County-year

Non-linear response of log(yield) to crop-specific seasonal average temperature
and precipitation, controlling for county and year fixed effects.

(72) (p. ).

We use the response of wheat to seasonal average temperature presented in the
paper. Results were obtained from the authors. Calorie-weighted averages were
taken between maize and wheat in order to combine results, as detailed in section

D.

McGrath and Lobell (23)

Outcome data:

Climate data:

Yield from 1960-2004 from FAOStat.

Keeling CO; concentrations and country average P/PET.

11



Methodology:

Result:

Impact function:

Process model that develops the response of different crops to carbon dioxide con-
centrations and growing season P/PET from empirical studies. This is then used to
estimate the changes to historical yields under a 100ppm increase in COs.

(23) (p. 5, fig. 4, obtained US result from authors).

We contacted the authors and received estimates of the CO, fertilization relation-
ship with yields of different crops on January 17®, 2014, specifically for the US.
Data were for 8 different crop types. We used an average of all types for cotton

estimates.

19.5
19 1
18.5
log(maize_production)
log(consumption)
184 predicted log(consumption)
T T T T T T
1960 1970 1980 1990 2000 2010

Year

Supplementary Figure S3: Predicted consumption of maize, modeled as a moving average of produc-
tion. Predicted values compare well to observed consumption, and allow us to project the smoothed
consumption values out to the end of the century.

B.1.1 Storage

In addition to the above impacts on yields, we observe that farmers store crops for sale in the future, and

so the overall impact of climate on supply of crops may appear smoother than if there were no storage.

For our projections, we also make use of Fisher et al. ( (73), Appendix p.xi, table A4) to estimate crop

consumption as a moving average process of crop production. We estimated the following equation for

12



crop ¢,

L
In(consumption).; = Y [Beq X In(production) .| + 0.t + yt? + €c
1=0
where ¢ indexes years and L = 2, except for soybeans where L. = 3, and we account for linear (6.)
and quadratic (v.) time-trends. Example results of this model are shown in Figure S3. We project the

smoothing of future crops with a time-series structure that incorporates these empirical results on storage.

Weights for each crop are constructed from the lagged coefficients, [3;, presented in Section D.1.

B.2 Crime

Jacob, Lefgren, and Moretti (26)

Outcome data: FBI National Incident Based Reporting System

Climate data: Weekly temperature and precipitation from the NCDC GHCN-Daily database.

Sample period: ~ 1995-2001

Sample unit: Jurisdiction-weeks

Methodology: Linear response of log(crime _rate) to average temperature and precipitation, con-
trolling for jurisdiction-by-year and month fixed effects, as well as jurisdiction-
specific 4" order polynomials in day of year.

Result: Modified version of (26) (p. 508-509, table 2).

13



Impact function:

Ranson (27)

Outcome data:
Climate data:
Sample period:
Sample unit:

Methodology:

Result:

Impact function:

We obtained data and replication files from the authors and generated coefficients
for a month-long exposure window, to account for displacement of crime, as noted
in the text. The climate variables are at weekly resolution, and in order to make
this comparable to (27) we reran the analysis using maximum temperatures and
then scaled the coefficients in (26). We did this by first dividing the coefficient for
the monthly exposure by 7, to get a daily response, and further by 4 to account
for the lagged climate variables. This resulted in the marginal effect on crime of a
1°F increase in daily temperature. Taking a reference point of zero response at a
temperature of 65°F (to coincide with the central point of the reference bin of (27))
we derived a linear response of violent crimes and property crimes to temperature

and precipitation.

FBI Universal Crime Reporting Data.

Daily temperature and precipitation from the NCDC GHCN-Daily database.
1960-2009

County-months

Non-linear response of log(crime_rate) to maximum temperature and precipitation,
controlling for county-by-year and state-by-month fixed effects. Temperature is
transformed into number of days within 10°F bins, with the 60-69°F bin as a refer-
ence point.

(27) (p. 9, fig. 4).

We contacted the author and received updated estimates of the percentage change
for each of 8 different classes of crimes on March 12", 2014. To derive response
functions, we grouped these into violent crimes (murder, rape, aggravated assault,
and simple assault) and property crimes (robbery, burglary, larceny, and vehicle

theft), and combined results within each class of crimes.

14



B.3 Health

Deschenes and Greenstone (24)

Outcome data:
Climate data:
Sample period:
Sample unit:

Methodology:

Result:

Impact function:

National Center for Health Statistics Compressed Mortality Files.

Daily temperature and precipitation from NCDC

1968-2002

County-years

Non-linear response of mortality to temperature, controlling for county-by-age-
group and state-by-year-by-age-group fixed effects. Temperature is transformed
into number of days in an year-long window within 10°F bins, with the 50-59°F
bin as a reference point.

Modifed version of (24) (p. 9, fig. 2).

We contacted the authors and received estimates on November 5%, 2013. To make
the study comparable to Barreca et al. (25), the main analysis was rerun with

log(mortality) as an outcome.

Barreca, Clay, Deschenes, Greenstone, and Shapiro (25)

Outcome data:

Climate data:
Sample period:
Sample unit:

Methodology:

Result:

Mortality from the Mortality Statistics of the US (pre-1959) and the Multiple Cause
of Death files (post-1959).

Daily temperature and precipitation from the NCDC GHCN-Daily database.
1929-2004

State-months

Non-linear response of log(mortality) to temperature, controlling for state-by-
month and year-month fixed effects, and state-by-month-specific quadratic time
trends. Temperature is transformed into number of days in a two-month window
within 10°F bins, with the 60-69°F bin as a reference point.

Modified version of (25) (p. 37, table 3, panel B).

15



Impact function:

B.4 Labor

We contacted the authors and received estimates on 5% November, 2013. The pre-
ferred specification, to account for forward displacement, was to use monthly mor-
tality with a 2-month exposure window to temperature. We used the estimated
response from 1960-2004. To make this response comparable to the response of
Deschenes and Greenstone (24), the analysis was rerun with the reference point
changed to the 50-59°F bin. To scale the coefficients, we divided each coefficient
value by a factor of six. We also obtained age-specific response functions for ages

0-1, 1-44, 45-64, and 65+.

Graff Zivin and Neidell (28)

Outcome data:
Climate data:
Sample period:
Sample unit:

Methodology:

Result:

Impact function:

Hours worked from the American Time Use Survey.

Daily temperature, precipitation, and humidity from NCDC.

2003-2006

Person-days

Seemingly-unrelated regression allowing for correlated errors between time spent
working, or indoor and outdoor leisure. Non-linear response to maximum temper-
atures controlling for county, year-by-month, and day of week fixed effects, as well
as individual level controls. Temperature is transformed into number of days within
5°F bins, with the 76-80°F bin as a reference point. High-risk sectors of the econ-
omy are defined as Agriculture, Forestry, Fishing and Hunting; Mining, Quarrying,
and Oil and Gas Extraction; Utilities; Construction; and Manufacturing.
High-risk: (28) (p. 15, fig. 3); Low-risk: (28) (p. 16, fig. 4)

We contacted the authors prior to publication and received full estimates for high-

risk and low-risk labor responses to temperature on December 18", 2013.
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C Meta-analysis approach

The dose-response functions are treated as probability distributions conditioned on weather variables,
such as temperature and precipitation. In the generic case, denoting weather variables as H and the

impact on an outcome of interest /, then the dose response function is
I =~(H)

where it is understood that «y(.) is only known with uncertainty. This representation allows us to account
for the range of uncertainty in previously published empirical estimates and motivates meta-analysis to
synthesize previous studies that are uncertain and may not agree perfectly with one another. In this
analysis, we note that some dose-response functions are based on a single study; others combine results
from more than one study.

The impact estimates that combine results from multiple studies apply a Bayesian hierarchical model
structure (67). This approach simultaneously estimates a distribution of possible underlying effect sizes,
as well as a degree of partial pooling. To the extent that the individual study estimates are consistent
with a single underlying effect, their estimates are pooled to accurately estimate the effect. However, to
the extent that the study estimates are inconsistent with each other, the hierarchical model determines a
study-specific idiosyncratic effect. The interpretation of this model averaging procedure is discussed in
detail in the context of climate impact estimation in (30).

Consider a collection of impact functions, z;(3;|H), with H representing weather variables and
i € {1,..., N} indexing independently published results. The variable /3; is an estimate of a true (un-
observed) parameter 6; that characterizes the response for study ¢. The true parameter combines both
a common effect, reflected by the hyperparameter ., and a study-specific effect §; — . We wish to
combine the estimates [3; into a single generalizable conditional distribution that only captures the effect
that is common across studies, y(u|H ). We treat each value of H independently, so we will write these

functions as z;(3;) and ().
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The conditional parameter distributions are assumed Gaussian

Oilp, 7 ~ N (1, 7°)

51"91' ~ (91701)

Accordingly, 3;|u, 7 ~ N'(u, 72 + 0?). We are interested in estimating the underlying hyperparameter p

and the between-study variance 72, which involves assessing their joint posterior probability distribution

p ﬁllu,f oz
P, 718, 0) = p(u, 7 H :

We apply non-informative uniform priors 1 ~ Unif(—o00,00) and 7 ~ Unif(0,00). The values of 3;
and o7 are provided by the published studies, and the rest of the parameters are simultaneously estimated.

An analytic solution exists for how to generate draws from the posterior distribution of this hier-
archical model, and is described in chapter 5 of Gelman et al. (61). We approximate the posterior by
producing draws and constructing a histogram for each conditional distribution, as follows. First, we

compute ¢(7|3, o) x p(7|B, o) on a 100-point grid between 0 and twice the greatest standard error, using

. (B — i)?
q(7|B,0) = V;/QH(U? + 7)Y exp (—m>

Ziv 1 2_,'_72 fB’L 1 N 1 ..
Sy and V"' = > 7., -2 We then construct the empirical CDF of 7|3, o from
=1 ;2 i

o‘+‘r

these samples, and use the inverse CDF method to create draws from this distribution. For each draw of

where ji =

T, we compute the draws from the conditional posterior distributions |7, 5,0 ~ N (ji, V).

All empirically derived dose-response functions after meta-analysis (where multiple studies were

available) are shown in Figure S4.
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Supplementary Figure S4: All 26 dose-response functions used in our analysis, following Baysian
model averaging in cases where multiple findings are reported. Solid lines are medians of the condi-
tional posterior, 95% credible intervals are shaded.
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D Applying climate projections to econometric dose-response func-
tions

For each county and each year, we apply the full range of climate realizations and weather projections
for each RCP scenario to the 26 composite (posterior) dose-response functions for each sector (shown in
Figure S4) for each day of each projection, accounting for the statistical uncertainty in the dose-response

functions. For a given outcome, the impact [ for county j in year ¢ depends on
e the RCP scenario r
e the climate realization m
e the daily projection w, and
e the empirical quantile of the dose-response function &.

Weather realizations are resolved for each day d, where d € t denotes days that occur in year t. We apply
the weather variables H 7% to each composite dose-response function ~(.) to recover annual impacts for

a given county:

L = v (W[ Hjig)

where the superscripts denote the state of the world (RCP scenario-by-climate realization-by-weather
projection-by-quantile) in a specific projection and subscripts denote the time (year) and place (county)
for which the outcome is recorded.

In total, we build projections for three RCP scenarios (2.6, 4.5 and 8.5) which each have a large num-
ber of climate realizations that are the climate models and climate model surrogates used to reconstruct
the distribution of GMST change (29 climate realizations for RCP 2.6, 43 for RCP 4.5 and 44 for RCP
8.5) for a total of 116 climate realizations. The differing number of climate realizations reflects the dif-
ferent numbers of modeling teams that generated climate forecasts for the CMIPS5 scenarios. Note that
within each RCP, each climate realization is assigned a weight 2" so that the full weighted distribution
of realizations mirrors the distribution of climate sensitivities (19, 41) (recall Figure 1A). Each climate

realization is utilized to construct ten daily projections by resampling daily weather residuals (relative to
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monthly climatologies) from the historical record in yearly blocks (to ensure autocorrelation structures
are preserved). We then implement Monte Carlo resampling (described further below) of the empirical
response functions to construct twenty five versions of each of the 26 dose-response functions, indexed
by k, for each daily projection. Thus, we calculate 116 x 10 x 25 = 29,000 possible values for each of
the 15 impacts in each of the 3,143 counties in each year (2013-2099). These possible future impacts for
each county-year represent a range of outcomes for each location and each moment in time, which we
use to construct conditional probability distributions for outcomes at those locations and times (described

in Section E).

Monte Carlo Our Monte Carlo approach captures the full range of uncertainty in dose-response func-
tion estimates, under the assumption that each function is independent (in the sense of its statistical
uncertainty). We randomly select quantiles, indexed by k, for each of the 26 empirical distributions
shown in Figure S4. (When specified, such as when we analyze uncertainty, only the median quantile is
used for all or some of these dose response functions.) The ordinality of the quantiles is chosen so that
these describe, in essence, low, median, and high impact scenarios. High quantiles correspond to greater
losses in yield and labor productivity, and greater increases in crime and mortality, within the range of
statistical uncertainty. The same quantile is used across the entire range of the conditioning variable. By
evaluating each impact function at a quantile, we generate a single-dimensional, deterministic function

which is used in the evaluation of the impact for each Monte Carlo run.

Below, we explain how [ is computed for each impact, drawing on the structure of results recov-
ered from the literature (Section B) and our meta-analysis (Section C). We use the notation 74y for
mean daily temperature; 7),;n and T 4x for minimum and maximum daily temperature, respectively;
and P for for precipitation. f(.) and g(.) are generic notations for functions that are described in each
subsection.

Note that the impact results for crime, labor productivity, and mortality are all estimated by binning
weather values into discreet bins (/3), since this is the model utilized in the previous analyses that we
draw on. In these cases, we construct a continuous impact curve by linearly interpolating between the

midpoints of these bins.
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Throughout, impacts are ultimately reported relative to 2012, the baseline year. The definitions of

each impact below do not reflect this.

D.1 Agricultural Yields and Production

Percent changes in agriculture production, relative to 2012, were generated using fixed, county-specific
growing seasons. The growing season, denoted S(j) for county j, is determined using the centroid of
the county applied to the planting and harvesting dates in (74). Denote S(j) Nt as the set of days in
year ¢ that are in the growing season. For maize and wheat, for which (74) provides two calendars (two
croppings for maize, and summer and winter wheat), the calendar that